Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro.

نویسندگان

  • S Bertrand
  • J R Cazalets
چکیده

The aim of this study was to establish how a membrane property contributes to the neuronal discharge during ongoing behavior. We therefore studied the role of the postinhibitory rebound (PIR) in the bursting discharge of lumbar motoneurons intracellularly recorded in newborn rat in vitro brain stem/spinal cord preparation. The PIR is a transient depolarization that occurs after a hyperpolarization. We first investigated how it was expressed during experimentally induced hyperpolarizations. Its amplitude increased with the inhibition and was voltage dependent. The Ca2+ channel blockers Mn2+ and Co2+ partly suppressed the PIR in a few of the motoneurons tested. When hyperpolarized, the motoneurons exhibited a sag that was associated with the PIR. Adding caesium to the bath abolished both sag and rebound, which suggested that the PIR in the lumbar motoneurons was mainly due to the activation of the inward rectifying current IQ. In the second part, we studied the physiological involvement of PIR during fictive locomotion induced by bath application of N-methyl-D-L-aspartate and serotonin. We established that experimentally induced PIR could initiate or modulate the bursting discharge of motoneurons during fictive locomotion. We then studied whether the firing patterns of the motoneurons were correlated in one way with the synaptic inhibition. When the monosynaptic inhibitory input to the motoneurons was abolished with the glycinergic blocker strychnine, these neurons stopped discharging (although they still were depolarized rhythmically). The firing of action potentials was restored by applying negative current pulses. This study provides evidence as to how one membrane property in mammals is involved in a complex type of behavior, namely locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postinhibitory Rebound During Locomotor-Like Activity in Neonatal Rat Motoneurons In Vitro SANDRINE BERTRAND AND JEAN-RENÉ CAZALETS

Bertrand, Sandrine and Jean-René Cazalets. Postinhibitory re1984; Henneman et al. 1965; Hounsgaard et al. 1988; Macbound during locomotor-like activity in neonatal rat motoneurons Cormick and Pape 1990; Smith et al. 1991), the gap between in vitro. J. Neurophysiol. 79: 342–351, 1998. The aim of this the data collected on the cellular properties of elementary study was to establish how a membran...

متن کامل

Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro.

The postnatal maturation of rat brainstem (oculomotor and hypoglossal nuclei) and spinal motoneurons, based on data collected from in vitro studies, is reviewed here. Membrane input resistance diminishes with age, but to a greater extent for hypoglossal than for oculomotor motoneurons. The time constant of the membrane diminishes with age in a similar fashion for both oculomotor and hypoglossal...

متن کامل

Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.

Whole cell current- and voltage-clamp recordings were obtained from lumbar motoneurons in the isolated neonatal rat spinal cord to characterize the behavior of motoneurons during neurochemically induced locomotor-like activity. Bath application of serotonin (10-100 muM) in combination with N-methyl-D-aspartate (1-12 muM) initially produced tonic membrane depolarization (mean = 26 mV), increased...

متن کامل

5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.

Postinhibitory rebound (PIR) can play a significant role for producing stable rhythmic motor patterns, like locomotion, by contributing to burst initiation following the phase of inhibition, and PIR may also be a target for modulatory systems acting on the network. The current aim was to explore the PIR in one type of interneuron in the lamprey locomotor network and its dependence on low voltag...

متن کامل

Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.

To ensure alternation of flexor and extensor muscles during locomotion, the spinal locomotor network provides rhythmic inhibition to motoneurons. The source of this inhibition in mammals is incompletely defined. We have identified a population of GABAergic interneurons located in medial laminae V/VI that express green fluorescent protein (GFP) in glutamic acid decarboxylase-65::GFP transgenic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 1998